高中數(shù)學重要知識點歸納
函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。
平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數(shù)。
高考對數(shù)學基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應用問題。
理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應用問題。
理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應用問題。
掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。
了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率。
高中數(shù)學易錯知識點整理
一.集合與函數(shù)
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關(guān)問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法
11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關(guān)系及應用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
三.數(shù)列
24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數(shù)。
26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
27.數(shù)列單調(diào)性問題能否等同于對應函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28.應用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。
四.三角函數(shù)
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
五.平面向量
40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數(shù)量積與兩個實數(shù)乘積的區(qū)別:
在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.
已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有.
在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達.(①設出變量,寫出目標函數(shù)②寫出線性約束條件③畫出可行域④作出目標函數(shù)對應的系列平行線,找到并求出最優(yōu)解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標準方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結(jié)論?)
54.在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見
59.線面平行的判定定理和性質(zhì)定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90°
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。
66.立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?
67.棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì).這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質(zhì);經(jīng)緯度定義易混.經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法.
70.二項式系數(shù)與展開式某一項的系數(shù)易混,第r+1項的二項式系數(shù)為。二項式系數(shù)最大項與展開式中系數(shù)最大項易混.二項式系數(shù)最大項為中間一項或兩項;展開式中系數(shù)最大項的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發(fā)生的概率公式;③相互獨立事件同時發(fā)生的概率公式.)
72.二項式展開式的通項公式、n次獨立重復試驗中事件A發(fā)生k次的概率易記混。
通項公式:它是第r+1項而不是第r項;
事件A發(fā)生k次的概率:.其中k=0,1,2,3,…,n,且0<p<1,p+q=1.< p="">
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態(tài)總體如何化為標準正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標準正態(tài)總體取值小于的概率)
九.導數(shù)及其應用
76.在點處可導的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導數(shù)可解決哪些問題?具體步驟還記得嗎?
77.你會用“在其定義域內(nèi)可導,且不恒為零,則在某區(qū)間上單調(diào)遞增(減)對恒成立。”解決有關(guān)函數(shù)的單調(diào)性問題嗎?
78.你知道“函數(shù)在點處可導”是“函數(shù)在點處連續(xù)”的什么條件嗎