海南高考文科數學難不難,難度系數解讀答案點評解析

思而思學網

一、考試性質
普通高等學校招生全國統(tǒng)一考試,是由合格的高中畢業(yè)生和具有同等學力的考生參加的選拔性考試.高等學校根據考生成績,按已確定的招生計劃,對考生德、智、體全面衡量,擇優(yōu)錄取,因此,新課程高考應具有較高的信度、效度,必要的區(qū)分度和適當的靈活度.
二、考試目標
根據教育部考試中心《2015年普通高等學校招生全國統(tǒng)一考試大綱(文科?課程標準試驗版)》(以下簡稱《大綱》),結合海南省基礎教育的實際情況,制定了《2015年普通高等學校招生全國統(tǒng)一考試大綱的說明(文科?課程標準實驗版)(供海南省使用)》(以下簡稱《說明》)的數學科部分。
制定《說明》既要有利于數學新課程的改革,又要發(fā)揮數學作為基礎學科的作用;既要重視考查考生對中學數學知識的掌握程度,又要注意考查考生進入高等學校繼續(xù)學習的潛能;既要符合《普通高中數學課程標準(實驗)》和《普通高中課程方案(實驗)》的要求,符合教育部考試中心《大綱》的要求,符合《海南省2007年普通高校招生考試改革指導方案》和海南省普通高中課程改革實驗的實際情況,又要利用高考命題的導向功能,推動新課程的課堂教學改革。
(一)考核目標
一、知識目標
知識是指《標準》所規(guī)定的必修課程、選修系列1和選修系列4中的數學概念、性質、法則、公式、公理、定理以及由其內容反映的數學思想方法,還包括按照一定程序與步驟進行運算,處理數據、繪制圖表等基本技能.
對知識的要求依次是了解、理解、掌握三個層次.
(1)了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在有關的問題中識別和認識它.
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.
(2)理解:要求對所列知識內容有較深刻的理性認識,知道知識間的邏輯關系,能夠對所列知識作正確的描述說明并用數學語言表達,能夠利用所學的知識內容對有關問題作比較、判別、討論,具備利用所學知識解決簡單問題的能力.
這一層次所涉及的主要行為動詞有:描述,說明,表達、表示,推測、想象,比較、判別、判斷,初步應用等.
(3)掌握:要求能夠對所列的知識內容能夠推導證明,利用所學知識對問題能夠進行分析、研究、討論,并且加以解決.
這一層次所涉及的主要行為動詞有:掌握、導出、分析,推導、證明,研究、討論、運用、解決問題等.
各部分知識的整體要求與定位參照《標準》相應模塊的有關說明,依照《大綱》制定.
2、能力目標
能力是指空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數據處理能力以及應用意識和創(chuàng)新意識.
(1)空間想像能力:能根據條件作出正確的圖形,根據圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質.
(2)抽象概括能力:對具體的、生動的實例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質;從給定的大量信息材料中,概括出一些結論,并能應用于解決問題或作出新的判斷.
(3)推理論證能力:根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力.推理包括合情推理和演繹推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明.
(4)運算求解能力:會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件,尋找與設計合理、簡捷的運算途徑;能根據要求對數據進行估計和近似計算.
(5)數據處理能力:會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,并作出判斷.數據處理能力主要依據統(tǒng)計或統(tǒng)計案例中的方法對數據進行整理、分析,并解決給定的實際問題.
(6)應用意識:能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,并對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題,建立數學模型;應用相關的數學方法解決問題并加以驗證,并能用數學語言正確地表達和說明.應用的主要過程是依據現(xiàn)實的生活背景,提煉相關的數量關系,將現(xiàn)實問題轉化為數學問題,構造數學模型,并加以解決.


(7)創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題.創(chuàng)新意識是理性思維的高層次表現(xiàn).對數學問題的"觀察、猜測、抽象、概括、證明",是發(fā)現(xiàn)問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強.

熱門推薦

最新文章